Search results for " symmetric"
showing 10 items of 78 documents
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
2014
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
Some results concerning simple locally finite groups of 1-type
2005
AbstractIn this paper several aspects of infinite simple locally finite groups of 1-type are considered. In the first part, the classes of diagonal limits of finite alternating groups, of diagonal limits of finite direct products of alternating groups, and of absolutely simple groups of 1-type are distinguished from each other. In the second part, inductive systems of representations over fields of characteristic zero (which are known to correspond to ideals in the group algebra) are studied in general for groups of 1-type. The roles of primitive respectively imprimitive representations in inductive systems are investigated. Moreover it is shown that in any proper inductive system the depth…
SCORING ALTERNATIVE FORECAST DISTRIBUTIONS: COMPLETING THE KULLBACK DISTANCE COMPLEX
2018
We develop two surprising new results regarding the use of proper scoring rules for evaluating the predictive quality of two alternative sequential forecast distributions. Both of the proponents prefer to be awarded a score derived from the other's distribution rather than a score awarded on the basis of their own. A Pareto optimal exchange of their scoring outcomes provides the basis for a comparison of forecast quality that is preferred by both forecasters, and also evades a feature of arbitrariness inherent in using the forecasters' own achieved scores. The well-known Kullback divergence, used as a measure of information, is evaluated via the entropies in the two forecast distributions a…
Geodesics on spaces of almost hermitian structures
1994
A natural metric on the space of all almost hermitian structures on a given manifold is investigated.
Symmetric identities in graded algebras
1997
Let P k be the symmetric polynomial of degree k i.e., the full linearization of the polynomial x k . Let G be a cancellation semigroup with 1 and R a G-graded ring with finite support of order n. We prove that if R 1 satisfies $ P_k \equiv 0 $ then R satisfies $ P_{kn} \equiv 0 $ .
Computing the ℤ2-Cocharacter of 3 × 3 Matrices of Odd Degree
2013
Let F be a field of characteristic 0 and A = M 2, 1(F) the algebra of 3 × 3 matrices over F endowed with the only non trivial ℤ2-grading. Aver'yanov in [1] determined a set of generators for the T 2-ideal of graded identities of A. Here we study the identities in variables of homogeneous degree 1 via the representation theory of the symmetric group, and we determine the decomposition of the corresponding character into irreducibles.
Strain gradient elasticity within the SGBEM
2014
Path integral solution handled by Fast Gauss Transform
2009
Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…
Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds
2016
ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.
ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.
2007
Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .